Designing Effective Assessments

Dorit Kaufman Stony Brook University

Summer Institute for Mathematics & Science Teachers Cyprus, June 2006

Developing An Assessment System Overview

- Assessment
 - Formative & Summative
- Assessment is comprehensive
 - Assess student learning
 - Assess effectiveness of teaching
 - Assess quality of curriculum
- Assessment is on-going, evolving & changing
 - Pre-assessment
 - Assessing during the learning & teaching process
 - Post-assessment
 - Review & revision of assessment is continuous

Developing a Comprehensive Assessment System

- Align with your curriculum & standards (guidelines)
- Align with your goals & objectives
- Develop a wide variety of assessment instruments
- Align with your students' diverse learning styles
- Match assessment instruments to teaching approach
 - Individual, pair, & group assessment
 - Use graphic organizers as assessment instruments
 - Use authentic assessments that are relevant & meaningful
 - Reflection as self assessment
- Use assessment for quality control
 - improve teaching & learning

Assessing with K-W-L

I already know	I want to know	I learned that

(Ogle, D.M. (1986). K-W-L: A teaching model that develops active reading of expository text. The Reading Teacher, 39 (6), 564-570

Developing Assessment for Improving Teaching & Learning

Impact of Assessment

- Analyze data to assess learning, teaching, & curriculum
- Use findings to identify areas of strength & areas that need improvement
- Make changes in planning & teaching
- Assessment for Content-based learning & teaching
 - Assess knowledge of content areas
 - Assess development of language skills (reading writing, listening & speaking
 - Use diverse instruments to accommodate all students
 - Change teaching approach based on assessment outcomes

Examples adapted from

Michael O'Malley &
Lorraine Valdez Pierce
Authentic Assessment for
English Language Learners
Addison Wesley
1996

Developing Authentic Assessments for Content-based Learning & Teaching (Fig. 2.1)

Oral interview

Text Retelling

Writing Samples

Projects / Exhibitions

Experiments / Demonstration

Open-ended Questions

Observations

Portfolios

When would you use these assessment

(pre-/post/during)?

Developing Rubrics

Figures 2.5 & 7.10

Develop collaboratively with students Rubric development increase students' understanding of how to achieve proficiency "Unpacks" proficiencies & strategies **Choice of descriptors Emerging - Proficient** Where would most students be? **Outstanding**

Unacceptable

Assessing Cognitive Skills

Across Content Areas

(Fig. 7.6)

Assessing Effective Use

of

Learning Strategies

(Fig. 4.2)

Scaffold Assessments

to

Help Students Succeed

(Fig. 7.1)

Assessment	Without	With	
Examples	Scaffolding	Scaffolding	
Write a word problem	Create a word problem from own numbers, give equation, story, & question	Given example and an outline of a sample problem Complete a word problem	
Summarize a science experiment	Write a summary of procedures in a science experiment following scientific principles	Given a list of procedures in science experiments including questions, materials, a plan for observations, & conclusions Complete a summary Demonstrate the steps using actual materials	
Retell or summarize text	Write 5 main ideas from an article & give examples	Complete an outline, a list, or a semantic map	

Self Assessment & Reflection

- Important for effective teaching
- Use regularly & model for students
- Encourage students to self assess regularly & to think about their own performance
- Use reflective journals
- Develop a rubric with students for self assessment tasks
- Reflect on quality of homework using a rubric

Self Assessment for

an Oral Report

Fig. 4.15

Standards (Guidelines)

NCTE

National Council for Teachers of English

NCTM

National Council of Teachers of Mathematics

NSTA

National Science Teachers Association

Web Resources for Standard-based Lessons

www.figurethis.org

Activities | Lessons | Standards | Web Links

NCTM Resources | About | Terms of Use | Search | Join NCTM

Activities

Explore our library of 72 online activities that help to make math come alive in the classroom or at home

Lessons

View our collection of 507 lessons for preK-12 math educators

Standards -

Learn about NCTM's

Principles and Standards for
School Mathematics

Web Links

Check out hundreds of exemplary online resources, as identified by an editorial panel

Highlighted Activity

State Data

Representing Numerical Information

State data
is
represented
visually—
each state
is colored
proportionally
to its data

value. Students can choose from pre-loaded sets about area, population, and gas usage, or they can enter their own data.

Highlighted Lesson

The Game of SKUNK

Understanding Choice and Chance

While playing a game involving probability, students develop

decision-making skills.

Professional Development

Got an Idea Worth Sharing?

Submit an article:

- Mathematics Teacher
- Math Teaching in the Middle School
- Teaching Children Mathematics
- ON-Math

Or send us your ideas for an Illuminations lesson plan.

2006-07 Lesson Study

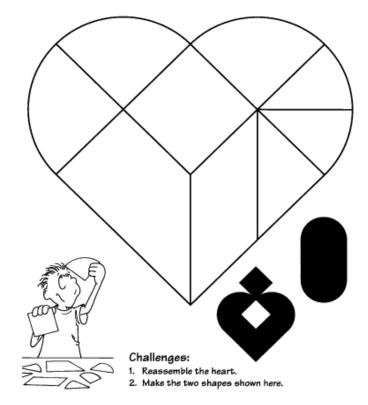
Participate in a year-long lesson study. This **three-credit graduate course** begins with a face-to-face meeting in August and continues with online meetings throughout the year.

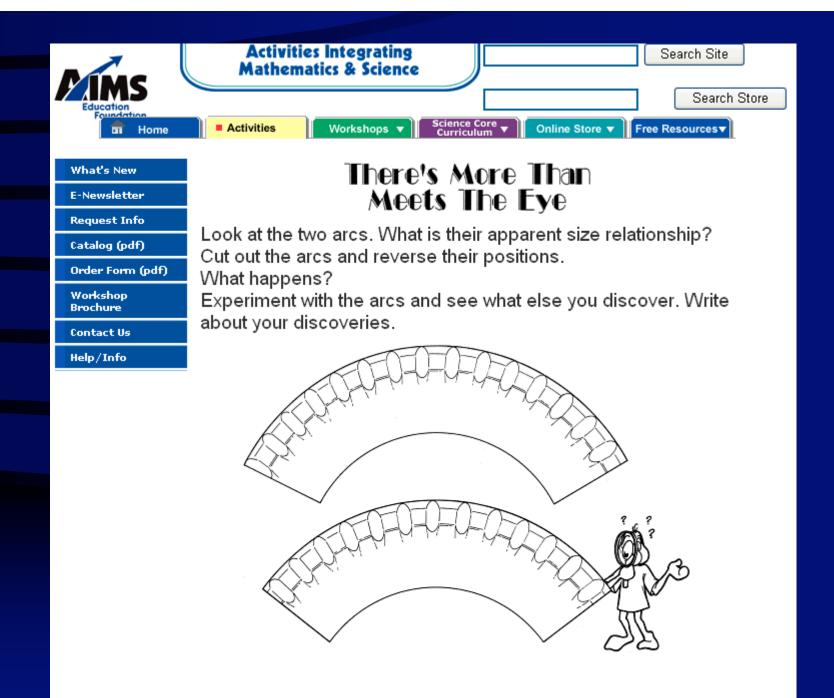

2005-06 Focus of the Year

"Assessing to Learn and Learning to Assess"

<u>Illuminations Site</u> <u>Redesign</u>

In January, Illuminations got a new look. Watch this <u>Flash</u> <u>movie</u> to see what's new! (Requires <u>Flash Player</u> 8.)


Challenges:


Order Form (pdf)

Workshop Brochure

Contact Us Help/Info

- 1. Reassemble the heart.
- 2. Make the two shapes shown at bottom right.

Number & Operations Algebra Geometry Measurement Data Analysis & Probability Problem Solving Reasoning & Proof Communication Connections Representation Table of Contents Appendix

E-examples

Resources

Overview: Standards for Grades 9 - 12

In secondary school, all students should learn an ambitious common foundation of mathematical ideas and applications. This shared mathematical understanding is as important for students who will enter the workplace as it is for those who will pursue

further study in mathematics and science. All students should study mathematics in each of the four years that they are enrolled in high school.

Because students' interests and aspirations may change during and after high school, their mathematics education should guarantee access to a broad spectrum of career and educational options. They should

experience the interplay of algebra, geometry, statistics, probability, and discrete mathematics. They need to understand the fundamental mathematical concepts of function and relation, invariance, and transformation. They should be adept at visualizing, describing, and analyzing situations in mathematical terms. And they need to be able to justify and prove mathematically based ideas.

High school mathematics builds on the skills and understandings developed in the lower grades. For example, students should enter high school with extensive experience in modeling various patterns and relationships. High school students might explore the following problem:

Realizing...

Overview: Standards for Grades 9-12

Prev Next

Introduction Number & Operations Algebra Geometry

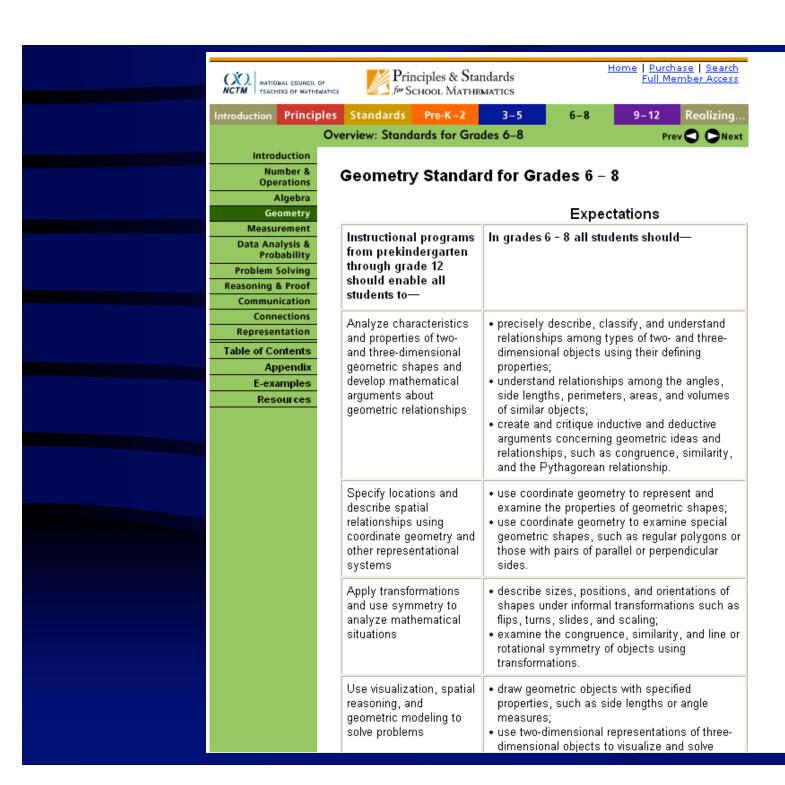

Measurement Data Analysis & Probability Problem Solving Reasoning & Proof Communication Connections Representation

Table of Contents Appendix E-examples Resources

Geometry Standard for Grades 9 - 12

Expectations

Instructional programs from prekindergarten through grade 12 should enable all students to—	in grades 9 - 12 all students should—
Analyze characteristics and properties of two- and three- dimensional geometric shapes and develop mathematical arguments about geometric relationships	 analyze properties and determine attributes of two- and three-dimensional objects; explore relationships (including congruence and similarity) among classes of two- and three-dimensional geometric objects, make and test conjectures about them, and solve problems involving them; establish the validity of geometric conjectures using deduction, prove theorems, and critique arguments made by others; use trigonometric relationships to determine lengths and angle measures.
Specify locations and describe spatial relationships using coordinate geometry and other representational systems	 use Cartesian coordinates and other coordinate systems, such as navigational, polar, or spherical systems, to analyze geometric situations; investigate conjectures and solve problems involving two- and threedimensional objects represented with Cartesian coordinates.
Apply transformations and use symmetry to analyze mathematical situations	 understand and represent translations, reflections, rotations, and dilations of objects in the plane by using sketches, coordinates, vectors, function notation, and matrices; use various representations to help understand the effects of simple transformations and their compositions.

□ ERC Mathematics and Science Education for the Future

Search

About Us | Our Work | Products | Newsroom | Contact Us

Home > Our Work

TERC's work in mathematics and science education includes research, curriculum and technology development, and implementation support, including professional development and assistance to districts and schools. Our programs span pre-kindergarten through college and include adult basic education and informal learning at museums, at home, and in afterschool programs. Research drives the creation of our activities and products. We also seek to create new knowledge about science and math learning and teaching through research.

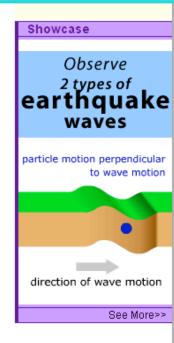
Classroom Resources

- Curricula
- Supplemental Materials

Out of School Resources

- After School
- Games & Software
- Museum & Informal

Educator and School System Support


- Professional Development
- School Reform

Research & Evaluation

- Evaluation
- Research

Selected Work Themes

- Adult Numeracy
- Earth and Space Science
- Elementary Math.
- Online Learning
- Special Needs

▲ Top

About Us | Our Work | Products | Newsroom | Contact Us

@Copyright 2005 TERC, All Rights Reserved. Privacy Policy | Use Policy | Accessibility Standards

aboutNSTA yourMembership ▶

teacherResources >

professionalInfo ▶

NSTAConferences ▶

NSTACommunity ▶

otherVisitors

scienceStore

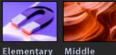
In the Science Store NOW:

Adventures in Paleontology: 36 Classroom Fossil Activities

Millions of years after vanishing from the Earth, dinosaurs still have the power to stir students' [more]

Request an NSTA Press catalog

siteSearch


Quick links ...

• Get Involved

Your Classroom

Info focused on you and your teaching environment

High

College

News

U.S. Earns a C in Technology NSTA-Kristin Collins

Forum to Tackle Intelligent Design Tallahassee Democrat (Florida)

Chimpanzee and Human Ancestors May Have Interbred Nature News

More News

Today in science history

On May 17 in 1883, in a flash during a fit of sleeplessness, Swedish chemistry student Svante Arrhenius, 24, is hit with his "dissociation theory" (which states that a substance like salt dissolves into electrically charged ions when added to water) to explain numerous experiments/data he was contemplating. At the time the theory was highly controversial and earned Arrhenius the lowest possible passing grade for his doctoral thesis. This theory is now accepted as fact, and its creator eventually won the Nobel Prize. [from The Illustrated] Almanac of Science, Technology, and Invention

NSTAPresents

Special \$22 Preservice, New-Teacher Membership ... Check It Out!

NSTANewsletters

If you are not a member of NSTA and would like to receive our free electronic newsletters - Science Class (monthly) and NSTA Express (weekly) - enter your e-mail address and location below and click submit.

E-mail:

State/province:

Search

AboutSNL

Email

Lessons

Tools

Resources

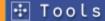
⊙Benchmarks

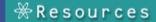
About the Benchmarks

To help educators integrate Science
NetLinks resources into a standardsbased curriculum, all site content is
organized around the Benchmarks for
Science Literacy. These benchmarks
are a set of science literacy goals
developed through Project 2061,
AAAS's long-term initiative to reform K12 science education. More on
Benchmarks...

To view the learning goals in a particular benchmark chapter, click on the desired grade level box in the right column of the table.

Send us feedback


Benchmarks Index


1. The Nature of Science How science works	K-2 3-5 6-8 9-12
The Nature of Mathematics Mathematics as part of the scientific endeavor	K-2 3-5 6-8 9-12
The Nature of Technology General principles of technology and engineering	K-2 3-5 6-8 9-12
4. The Physical Setting The makeup and structure of the universe	K-2 3-5 6-8 9-12
5. The Living Environment How living things function and interact	K-2 3-5 6-8 9-12
6. The Human Organism The biology of humans	K-2 3-5 6-8 9-12
7. Human Society Social behavior of individuals and groups	K-2 3-5 6-8 9-12
8. The Designed World Key technologies that shape our world	K-2 3-5 6-8 9-12
9. The Mathematical World Basic mathematical ideas	K-2 3-5 6-8 9-12
10. Historical Perspectives Key episodes in the history of science	K-2 3-5 6-8 9-12
11. Common Themes Crosscutting themes and ideas	K-2 3-5 6-8 9-12
12. Habits of Mind Values, skills, and attitudes	K-2 3-5 6-8 9-12

Science NetLinks

Search AboutSNL Email

Lessons

②Benchmarks

Resource Navigator

Choose a Grade vand Choose a Benchmark

Display

Reviewed Sites

4000 Years of Women in Science

Considering that modern American society has only truly acknowledged the legitimacy of women in sciences for say, the last twenty years, a website on 4000 years of women in science is truly an inspiration!

About Rainbows

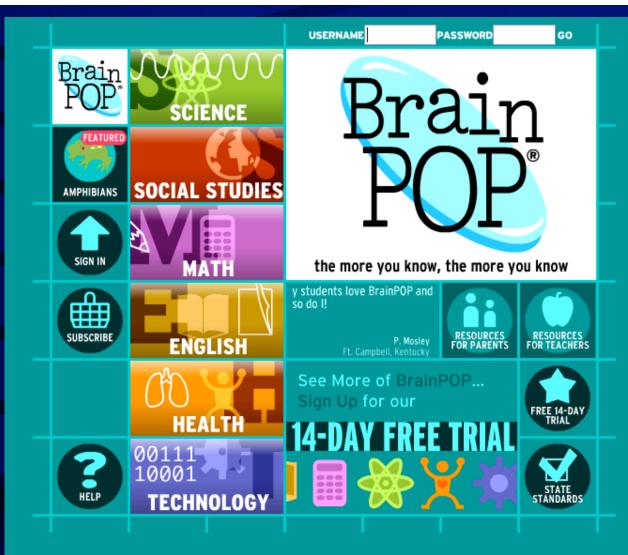
This site is a tutorial developed by Beverly Lynds, co-PI for Project Skymath of the University Corporation for Atmospheric Research. The images and charts that are provided help to clarify the description, and really bring the words to life.

Send us feedback

Print Page

Annenberg/CPB

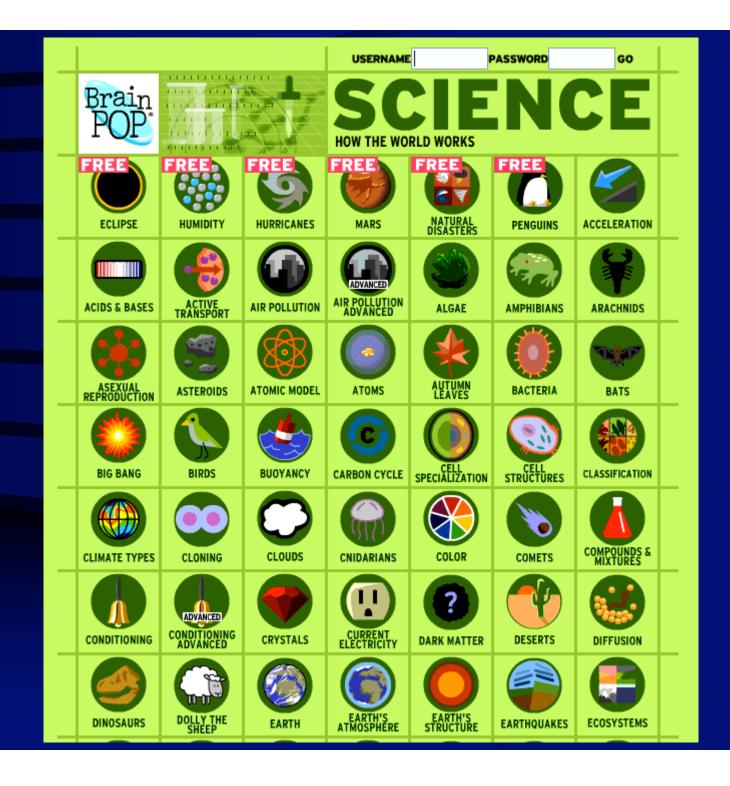
This is the essential website for educators, parents, librarians, and students.


Boston Museum of Science

The Boston Museum of Science (MOS) has something for everyone.

BrainPOP

This site can stimulate independent learning and creativity in students, while it provides teachers with new ideas for their classes. BrainPOP is a first-rate, fun learning experience for visitors.


Make BrainPOP your Home Page

About BrainPOP

BrainPOP en Español

Can't see the movies? Download the Flash Plug-in here. Still need help? Click here.

All contents copyright @ BrainPOP.com LLC. All rights reserved.

Lawrence Hall of Science

University of California, Berkeley

Search

Special Events

Art Meets Science Benefit Thursday, May 18

Body by Design Thursday, May 11

Exhibits

My Home Planet Earth opens Saturday, May 27

CSI: Crime Scene Insects through Monday, May 29

Participate

 in School Programs
 and Teacher Workshops

School Programs

Programs for Schools Catalog Programs for Teens

Professional Development

Calendar

more for Schools & Teachers

Classes & Camps

<u>Spring Classes</u> <u>Family Workshops</u> <u>Summer Camps</u> • Discover
Great Publications
and Products

Parents

About
 Join
 Shop
 Play

Math in the Garden
new!
The lourney—

The Journey— Through Middle School Math FAMILY MATH II

Teachers

Global Systems
Science
Seeds of Science •

Roots of
Reading
Electric Circuits
Algebraic
Reasoning

New York State Teacher Centers

Main Menu

MarcoPolo Video

MarcoGrams

MPNY Report Card

Trainer Resources

Aligned Lessons

Arts

ELA Math

Science

Social Studies

New @

Rate this lesson! Visit the

<u>Alignment Home</u>

for details.

marcopolo New York State Learning Standards

aligned supported

FIND A LESSON

-Search by NYS Standards- 💌 😡

Main Menu

Math

Use links on right for key ideas, performance indicators and aligned MarcoPolo Lessons for each learning standard.

MST Standard Three: Mathematics

Students will:

- understand the concepts of and become proficient with the skills of mathematics;
- communicate and reason mathematically;
- become problem solvers by using appropriate tools and strategies;

through the integrated study of number sense and operations, algebra, geometry, measurement, and statistics and probability.

Instructionally, there are three components underpinning the revised Learning Standards for Mathematics:

- . Conceptual Understanding, involving the understanding of mathematical ideas and procedures. This includes the knowledge of basic arithmetic facts. This component serves to lay the foundation for "remembering or reconstructing mathematical facts and methods, for solving new and unfamilian problems, and for generating new knowledge".
- · Procedural Fluency, that is, the ability to carry out procedures "flexibly, accurately, efficiently and appropriately", and
- . Problem Solving, the "ability to formulate, represent, and solve mathematical problems".

These components are represented as content and process strands in the revised standards, which are grade-specific.

The five content strands are: number sense and operations, algebra, geometry, measurement, and statistics and probability. Within each of these strands are bands which focus instruction into specific areas for study, such as Estimation in the Number Sense and Operations strand.

The five process strands are problem solving, reasoning and proof, communication, connections, and representation.

Math by Grade

PreK Math

Kindergarten Math

Grade 1 Math

Grade 2 Math

Grade 3 Math

Grade 4 Math

Grade 5 Math

Grade 6 Math

Grade 7 Math

Grade 8 Math

Algebra

Geometry

Algebra 2 & Trig

marcopolo New York State Learning Standards

HOME

FIND A LESSON

-Search by NYS Standards- 🔻 👩

Main Menu

About MPNY Partners Training Resources Alignment Home

Lesson Details

Lesson Information

Lesson Title: Exploring Pendulums

Grade Level

Lesson URL:

6,7,8

(s):

http://www.sciencenetlinks.com/Lessons.cfm?DocID=179

Description: In this Science NetLinks lesson, students will explore websites with simulations of

pendulums, where they'll be able to change the length and angle of the bob and observe its effects. They will then construct and test their own controlled-falling systems, or pendulums, to further observe and verify these theories. This lesson helps students understand concepts related to how gravitational forces act on objects by exploring the

motion of pendulums.

Teacher Ratings:

Not yet rated.

View ratings and comments

Rate this lesson!

Partner Information

Partner Name: ScienceNetLinks

NY State Standards Alignments:

Subject	Grade or Level	Learning Standard or MST Math Strand or ELA Literacy Competency	Key Idea or MST Math Band or ELA Competency Skill	Performance Indicator or ELA Competency Indicator
Science	Intermediate	Standard 4 - Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science.	Physical Setting Energy and matter interact through forces that result in changes in motion.	Students describe different patterns of motion of objects.
Science	Intermediate	Standard 4 - Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science.	Physical Setting Energy and matter interact through forces that result in changes in motion.	Students observe, describe, and compare effects of forces (gravity, electric current, and magnetism) on the motion of objects.

Web Resources for Teachers

- http://mathforum.org/trscavo/tangrams/tangram-pieces.html
- http://www.aimsedu.org/Puzzle/Heart/heart2.html
- http://www.aimsedu.org/Puzzle/MoreNEye/arcs2.html
- http://illuminations.nctm.org/
- http://standards.nctm.org/document/chapter7/index.htm
- http://standards.nctm.org/document/chapter6/geom.htm
- http://www.terc.edu/ourwork/
- http://www.sciencenetlinks.com/benchmark_index.htm
- http://www.sciencenetlinks.com/resources_list.cfm?Grade=6-8&BenchmarkID=1
- http://www.brainpop.com/
- http://www.brainpop.com/science/seeall/
- http://www.lhs.berkeley.edu./

Additional Web Resources for Teachers

- http://www.nsta.org/
- http://standards.nctm.org/document/chapter7/geom.htm
- http://www.nyiteez.org/MarcoPoloNY/index.php
- http://www.nyiteez.org/MarcoPoloNY/NYSS_Math.php
- http://www.nyiteez.org/MarcoPoloNY/ProgramDetail.php?CourseID=SN0179
 22
- http://www.physics.uoguelph.ca/applets/Intro_physics/kisalev/java/pend1/ind ex.html
- http://www.ipl.org/div/kidspace/projectguide/

Dorit Kaufman Stony Brook University www.pep.sunysb.edu

Cyprus, June 2006

